Acyclic 5-choosability of planar graphs without 4-cycles
نویسندگان
چکیده
منابع مشابه
Acyclic 4-choosability of planar graphs
A proper vertex coloring of a graph G = (V , E) is acyclic if G contains no bicolored cycle. Given a list assignment L = {L(v) | v ∈ V } of G, we say G is acyclically L-list colorable if there exists a proper acyclic coloring π of G such that π(v) ∈ L(v) for all v ∈ V . If G is acyclically L-list colorable for any list assignment with |L(v)| ≥ k for all v ∈ V , then G is acyclically k-choosable...
متن کاملThe 4-choosability of planar graphs without 6-cycles
Let G be a planar graph without 6-cycles. We prove that G is 4-choosable.
متن کاملChoosability and edge choosability of planar graphs without five cycles
It is proved that a planar graph G without five cycles is three degenerate, hence, four choosable, and it is also edge-(A( G) + l)h c oosable. @ 2002 Elsevier Science Ltd. All rights reserved. Keywords-Choosability, Edge choosability, Degeneracy, Planar graph.
متن کاملGroup edge choosability of planar graphs without adjacent short cycles
In this paper, we aim to introduce the group version of edge coloring and list edge coloring, and prove that all 2-degenerate graphs along with some planar graphs without adjacent short cycles is group (∆(G) + 1)-edgechoosable while some planar graphs with large girth and maximum degree is group ∆(G)-edge-choosable.
متن کاملEdge choosability of planar graphs without small cycles
We investigate structural properties of planar graphs without triangles or without 4-cycles, and show that every triangle-free planar graph G is edge-( (G) + 1)-choosable and that every planar graph with (G) = 5 and without 4-cycles is also edge-( (G) + 1)-choosable. c © 2003 Elsevier B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2008
ISSN: 0012-365X
DOI: 10.1016/j.disc.2007.11.076